Fractional Resurfacing

A New Therapeutic Modality for Becker’s Nevus

Adrienne S. Glaich, MD; Leonard H. Goldberg, MD, FRCP; Tianhong Dai, PhD; Joy H. Kunishige, MD; Paul M. Friedman, MD; DermSurgery Associates, Houston, Texas (Drs Glaich, Goldberg, and Friedman); and Departments of Dermatology, Weill Cornell Medical College, Methodist Hospital, Houston (Drs Goldberg and Friedman), Harvard Medical School, Boston, Massachusetts (Dr Dai), and The University of Texas Medical School, Houston (Drs Goldberg, Kunishige, and Friedman)

REPORT OF CASES

PATIENT 1

A 26-year-old white man presented with a pigmented lesion on the right upper chest that developed at 15 years of age. Results of physical examination showed multiple light brown macules coalescing into patches with terminal hairs (Figure 1A). The patient’s medical history was unremarkable. No previous treatment to the area had been administered.

PATIENT 2

A 16-year-old white male adolescent was referred for treatment of a pigmented patch with terminal hairs on the right cheek (Figure 2A). His mother reported that the pigmented patch first developed at 5 years of age, and terminal hairs developed within the lesion during puberty. The patient’s medical history was unremarkable. No previous treatment to the area had been administered.

THERAPEUTIC CHALLENGE

Traditional laser treatment of Becker’s nevus may involve the use of ablative1,2 and Q-switched1-3 lasers. Ablative lasers remove the entire epidermis of the treatment area and are clinically effective.1,2 However, patients experience a high incidence of significant adverse effects. Q-switched lasers are effective in the treatment of cutaneous pigmented lesions. The major disadvantage of this modality is that complete clearing of the lesion is rarely achieved, and many treatment sessions are usually required.1

SOLUTION

Both patients were treated with the 1550-nm wave-length erbium-doped fiber laser (Fraxel; Reliant Technologies Inc, Mountain View, California). The treatment area was cleansed before the procedure using a mild soap. A topical lidocaine cream, 4% (LMX; Ferndale Laboratories Inc, Ferndale, Michigan), was applied under occlusion to the treatment area for 1 hour before treatment. A water-soluble tint certified by the US Food and Drug Administration (OptiGuide Blue; Reliant Technologies Inc) was applied to the treatment area to allow the laser’s Intelligent Optical Tracking System (Reliant Technologies Inc) to adjust the treatment pattern with respect to handpiece velocity. An ointment (LipoThene Inc, Pacific Grove, California) was applied over the watersoluble tint so that the laser handpiece could glide smoothly over the treatment area.

Photographic documentation and clinical improvement scores were determined at each treatment visit, at 1 month after the last treatment, and at 3 or 6 months after the last treatment. A medical evaluation was independently performed using the following well-established quartile grading scale: grade 1 (<25%) indicates minimal to no improvement; grade 2 (25%-50%), moderate improvement; grade 3 (51%-75%), marked improvement; and grade 4 (>75%), near total improvement.

During treatment, the patients experienced mild pain. Moderate to severe postprocedure erythema and edema typically resolved within 24 to 48 hours. No additional adverse effects were observed. Based on independent clinical assessment by comparison with baseline photographs,
both patients achieved grade 4 improvement, indicating that
greater than 75% of the pigment had faded by the 1-month
follow-up (Figures 1B and 2B). This improvement was
maintained at the final follow-up visit, which was per-
formed at 6 months for patient 1 and at 3 months for pa-
tient 2. There was no improvement in hypertrichosis.

COMMENT

Becker’s nevus (pigmented hairy epidermal nevus)\(^3\) is
characterized by the presence of a light or dark brown
patch with a sharply outlined but irregular border.\(^6,7\) In
male patients, the lesion may develop increased hairi-
ness after puberty.\(^7\) Histopathologically, the melanin con-
tent of the keratinocytes is increased, whereas the num-
ber of melanocytes is normal or only slightly increased.
The basal cell layer is hyperpigmented, and mela-
nophages may be present in the papillary dermis.\(^7\) Beck-
er’s nevus is fairly common: a study of 19 302 adoles-
cents and men aged 17 to 26 years revealed a prevalence
of 0.52%.\(^8\) Becker’s nevus is a benign condition, and there
have been no reports of malignant transformation.

Figure 1. Becker’s nevus on the right chest of patient 1 before (A) and after (B) 6 treatments with fractional resurfacing.

Figure 2. Becker’s nevus on the right cheek of patient 2 before (A) and after (B) 5 treatments with fractional resurfacing.
Fractional resurfacing creates hundreds to thousands of dense MTZs while sparing surrounding tissue. The epidermis and dermis are coagulated but only within the MTZs. A density of 2500 MTZ/cm² at 10 mJ results in approximately 25% cross-sectional area of thermal damage. As a result, epidermal repair is rapid because of the relatively small area of injury and short migratory paths for keratinocytes. Twenty-four hours after fractional resurfacing, the continuity of the epidermal basal layer is restored. Complete epidermal regeneration is obtained by day 7.

The 1500-nm wavelength, which targets tissue water, penetrates to a depth of approximately 1000 µm into the skin (absorption coefficient penetration, approximately 9.6 cm⁻¹ in water at 1550 nm). By adjusting the optimal focal length and/or the energy of the laser, high local radiant exposure can be achieved at various intradermal depths. Thus, different compartments of various depths can be arbitrarily selected as the targets of photothermolysis. The stratum corneum remains intact during exposure to 1550-nm irradiation because it contains less water. This dramatically reduces the risk of infection compared with more complete ablative techniques.

Only a limited number of the keratinocytes within the lesion are removed in a single treatment session (limited to the MTZs). This results in rapid and complete epidermal healing between treatment sessions. With multiple treatment sessions, however, thermal damage over the entire treatment area can be achieved. Fractional resurfacing may improve Becker’s nevus by removing acanthotic and pigmented epidermis.

Laser treatment of Becker’s nevus has included ablative and Q-switched techniques. Ablative lasers, such as the 2940-nm erbium:YAG lasers, target tissue water and remove the entire epidermis and varying thicknesses of the dermis. Patients frequently experience posttreatment edema, erythema, burning, and crusting. Erythema can last several months. Pigmentary changes, acne flares, herpes simplex infection, scars, and milia formation may also occur with ablative techniques.

Q-switched lasers, such as the 694-nm Q-switched ruby, 1064-nm Q-switched Nd:YAG, and 755-nm Q-switched alexandrite lasers, selectively damage epidermal and dermal melanin without removing the entire epidermis. This modality decreases the adverse effects associated with treatment. There has also been a report of using the long-pulsed ruby laser for Becker’s nevus to decrease both pigmentation and hair density. With Q-switched lasers, complete clearing of the lesions is rarely achieved, and many treatment sessions are necessary.

These 2 cases demonstrate marked lightening of a Becker’s nevus on the chest and face after a series of fractional resurfacing treatments. Fractional resurfacing is a promising new treatment modality for Becker’s nevus. No adverse effects were observed, and the safety profile appears to be fairly broad. Additional controlled studies are warranted to better understand the efficacy of fractional resurfacing for the treatment of Becker’s nevus and to determine optimal treatment settings.

Accepted for Publication: January 3, 2007.

Correspondence: Paul M. Friedman, MD, DermSurgery Associates, 7515 S Main St, Ste 210, Houston, TX 77030 (pmfriedman@dermsgurgery.org).

Author Contributions: Dr Friedman had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Glaih, Dai, and Friedman.

Acquisition of data: Glaih, Dai, and Friedman.

Analysis and interpretation of data: Glaih, Goldberg, Dai, Kunishige, and Friedman.

Drafting of the manuscript: Glaih, Dai, and Kunishige. **Critical revision of the manuscript for important intellectual content:** Goldberg, Kunishige, and Friedman.

Study supervision: Goldberg and Friedman.

Financial Disclosure: None reported.

<table>
<thead>
<tr>
<th>Table. Treatment Settings</th>
<th>Patient 1</th>
<th>Patient 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Session</td>
<td>Energy Level, mJ</td>
<td>Total Density, MTZs/cm²</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>2000</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>2000</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>2500</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>2500</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2000</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>2500</td>
</tr>
</tbody>
</table>

Abbreviations: MTZs, microscopic treatment zones; NA, not applicable.

A 15-mm spot size was used.
